# A Molybdenum–Molybdenum Quadruple Bond Bridged by Four Carboxyl Groups but **Entirely Isolated from Axial Coordination**

F. ALBERT COTTON\* and J. LON THOMPSON

#### Received April 23, 1981

The compound Mo<sub>2</sub>(O<sub>2</sub>Cbiph)<sub>4</sub>, where biphCO<sub>2</sub>H is 2-phenylbenzoic acid, has been prepared and structurally characterized by X-ray crystallography. In this case the steric properties of the  $biphCO_2^{-1}$  ligands prevent intermolecular association, and the crystal structure consists of a simple van der Waals packing of the molecules with no axial ligation, intermolecular or otherwise. The Mo-Mo bond length is 2.082 (1) Å, which is 0.014 (2) Å shorter than that in the benzoate where there is intermolecular association with Mo-O distances of 2.876 (2) Å. The compound crystallizes in space group PI with Z = 1 and the following unit cell dimensions: a = 10.169 (1) Å, b = 14.812 (3) Å, c = 7.563 (1) Å,  $\alpha = 98.59 (1)^{\circ}$ ,  $\beta$ = 103.93 (1)°,  $\gamma = 102.58$  (1)°, V = 1054.4 (6) Å<sup>3</sup>. The structure was refined with the use of 352 variables to  $R_1 = 0.034$ and  $R_2 = 0.044$  with those 2243 measured reflections having intensities  $> 3\sigma$ .

#### Introduction

All types of compounds containing quadruple bonds evidently have some inherent tendency to bind ligands in their axial positions, but the strength of this tendency varies greatly. For dichromium tetracarboxylates it is very great, and Cr<sub>2</sub>- $(O_2CR)_4$  molecules are very difficult to obtain without axial ligation. Virtually all solid compounds known contain Cr<sub>2</sub>- $(O_2CR)_4L_2$  molecules. In the two cases where a crystalline  $Cr_2(O_2CR)_4$  compound has been obtained, namely, with R =  $CH_3$  and  $C(CH_3)_3$ , the molecules are linked into infinite chains<sup>1,2</sup> in which the  $Cr_2(O_2CR)_4$  molecules serve as axial donors to one another, as indicated in the partial schematic diagram I. Qualitatively similar though weaker intramolecular associations occur in five Mo<sub>2</sub>(O<sub>2</sub>CR)<sub>4</sub> compounds.<sup>3-6</sup>



From a theoretical point of view, it is easier to discuss the quadruple bond in isolation, i.e., to consider just the M<sub>2</sub>- $(O_2CR)_4$  unit, uncomplicated by either axial ligands or the intermolecular bonds. As a basis for such theoretical study, it is necessary to have structural data and other experimental results on the isolated  $M_2(O_2CR)_4$  molecules. The problem, in view of their propensity to bind axial ligands or to associate, is how to isolate them under conditions where the desired structural and other data can be measured. The use of R groups with the size and shape necessary to ensure isolation is something more easily said than done, and we have previously reported that using 2-phenylbenzoate (biphCO<sub>2</sub><sup>-</sup>) ligands with  $Cr_2^{4+}$  we still obtained a "dimer of dimers" structure

- (1) Cotton, F. A.; DeBoer, B. G.; LaPrade, M. D.; Pipal, J. R.; Ucko, D.
- (3)
- A. Acta Crystallogr., Sect. B 1971, B27, 1664.
   Cotton, F. A.; Extine, M. W.; Rice, G. W. Inorg. Chem. 1978, 17, 176.
   Lawton, D.; Mason, R. J. Am. Chem. Soc. 1965, 87, 921.
   Cotton, F. A.; Mester, Z. C.; Webb, T. R. Acta Crystallogr., Sect. B 1974, B30, 2768.
- Cotton, F. A.; Norman, J. G., Jr. J. Coord. Chem. 1971, 1, 161. Cotton, F. A.; Extine, M.; Gage, L. D. Inorg. Chem. 1978, 17, 172. Cotton, F. A.; Norman, J. G., Jr.; Stults, B. R.; Webb, T. R. J. Coord. (6)Chem. 1976, 5, 217.

Table I. Crystallographic Parameters

| formula                                           | $Mo_{1}O_{1}C_{1}H_{16}$           |
|---------------------------------------------------|------------------------------------|
| space group                                       | $P\overline{1}$                    |
| а Â                                               | 10 169 (1)                         |
| u, 11<br>h a                                      | 14 912 (2)                         |
| <i>U</i> , <b>A</b>                               | 14.812(3)                          |
| с, А                                              | 7.563(1)                           |
| α, deg                                            | 98.59(1)                           |
| 3. deg                                            | 103.93(1)                          |
| y, deg                                            | 102.58 (1)                         |
| V. Å <sup>3</sup>                                 | 1054.4 (6)                         |
| $d_{-1} = g/cm^3$                                 | 1 544                              |
| 7                                                 | 1.544                              |
| £<br>£                                            | 1                                  |
| IW                                                | 980.74                             |
| crystal size, mm                                  | $0.10 \times 0.30 \times 0.40$     |
| $\mu$ (Mo K $\alpha$ ), cm <sup>-1</sup>          | 6.461                              |
| range $2\theta$ , deg                             | $0^{\circ} < 2\theta < 50^{\circ}$ |
| no. of unique data                                | 2261                               |
| no, of data with $F_{0}^{2} > 3\sigma(F_{0}^{2})$ | 2243                               |
| no, of variables                                  | 352                                |
| P                                                 | 0.034                              |
|                                                   | 0.034                              |
| $R_2$                                             | 0.044                              |
| goodness of fit (esd)                             | 0.979                              |
| largest shift                                     | 0.03                               |
| largest neak e/Å <sup>3</sup>                     | 0.674                              |
| iangest peak, e/A                                 | 0.074                              |

rather than the desired  $Cr_2(O_2Cbiph)_4$  molecules.<sup>7</sup>

In view of the fact that the  $Mo_2(O_2CR)_4$  compounds show a much lower tendency to bind axial ligands and to associate with one another,<sup>5</sup> we wondered if the biph $CO_2^-$  ligand might succeed in giving isolated Mo<sub>2</sub>(O<sub>2</sub>Cbiph)<sub>4</sub> molecules even though it had failed to enforce complete isolation of Cr<sub>2</sub>- $(O_2Cbiph)_4$  molecules. In this paper we report the preparation and structural characterization of Mo<sub>2</sub>(O<sub>2</sub>Cbiph)<sub>4</sub> and show that the crystalline compound does, in fact, consist of a van der Waals packing of isolated molecules.

## **Experimental Section**

Molybdenum(II) acetate was prepared by established procedures.<sup>8</sup> A mixture of 0.110 g of Mo<sub>2</sub>(O<sub>2</sub>CCH<sub>3</sub>)<sub>4</sub> and 0.25 g of 2-phenylbenozic acid (biphCO<sub>2</sub>H) was heated at 120 °C under an argon atmosphere for 12 h. The molten mixture solidified to a bright yellow solid, which was slightly soluble in toluene, giving crystals of Mo<sub>2</sub>(O<sub>2</sub>Cbiph)<sub>4</sub> upon cooling.

A crystal of dimensions of  $0.10 \times 0.30 \times 0.40$  mm was coated with epoxy cement and then attached to the end of a glass fiber. Data were collected on a Syntex PI automated four-circle diffractomer using Mo K $\alpha$  ( $\lambda = 0.710730$ Å) radiation with a graphite crystal monochromator in the incident beam. Unit cell constants were obtained from indexing on 15 intense centered reflections in the range 25°  $\leq$  $2\theta \leq 32^{\circ}$ . Unit cell constants are given in Table I with other data

Cotton, F. A.; Thompson, J. L. Inorg. Chem. 1981, 20, 1292. (8) Brignole, A.; Cotton, F. A. Inorg. Synth. 1972, 13, 81.

Table II. Table of Positional and Thermal Parameters and Their Estimated Standard Deviations<sup>a, b</sup>

|       |            |            |              |                           |          |                |           |            |                           | _ |
|-------|------------|------------|--------------|---------------------------|----------|----------------|-----------|------------|---------------------------|---|
| atom  | x          | у          | z            | B(1,1)                    | B(2,2)   | <i>B</i> (3,3) | B(1,2)    | B(1,3)     | <i>B</i> (2,3)            |   |
| Mo    | 0.45930(4) | 0,45033(3) | 0.07013(6)   | 1.23 (1)                  | 1.91 (1) | 1.76(1)        | 0.36(1)   | 0.29(1)    | 0.43 (1)                  |   |
| O(1)  | 0.4098 (3) | 0.3390 (2) | -0.1604 (4)  | 2.1 (1)                   | 1.9 (1)  | 1.9 (1)        | 0.2(1)    | 0.7(1)     | 0.6 (1)                   |   |
| O(2)  | 0.4937 (3) | 0.4453(2)  | -0.3123(4)   | 2.0(1)                    | 1.8(1)   | 2.0(1)         | 0.2(1)    | 0.5(1)     | 0.4(1)                    |   |
| O(3)  | 0.6555 (3) | 0.4234 (2) | 0.1667 (4)   | 1.4 (1)                   | 2.3(1)   | 2.3(1)         | 0.5(1)    | 0.6(1)     | 0.8 (1)                   |   |
| O(4)  | 0.7439 (3) | 0.5315(2)  | 0.0233 (4)   | 1.5(1)                    | 2.2(1)   | 2.5 (1)        | 0.3(1)    | 0.6(1)     | 0.9(1)                    |   |
| C(1)  | 0.4331 (4) | 0.3602 (3) | -0.3084(7)   | 1.4 (2)                   | 2.5 (2)  | 2.1 (2)        | 0.8(1)    | 0.3(1)     | 0.0 (2)                   |   |
| C(2)  | 0.7569 (5) | 0.4694 (3) | 0.1207 (7)   | 1.8 (2)                   | 2.3 (2)  | 2.3 (2)        | 0.5(1)    | 0.5 (2)    | 0.1 (2)                   |   |
| C(11) | 0.3950 (5) | 0.2862 (3) | -0.4803(7)   | 1.8 (2)                   | 2.2 (2)  | 2.1 (2)        | 0.8(1)    | 0.2(1)     | 0.4 (2)                   |   |
| C(12) | 0.2942 (5) | 0.1986 (3) | -0.5144 (7)  | 2.0 (2)                   | 2.5 (2)  | 2.3 (2)        | 0.4 (2)   | 0.4 (2)    | 0.2 (2)                   |   |
| C(13) | 0.2776 (6) | 0.1333 (4) | -0.6763 (8)  | 3.2 (2)                   | 2.4 (2)  | 3.9 (3)        | -0.7 (2)  | 0.8 (2)    | -0.9 (2)                  |   |
| C(14) | 0.3544 (7) | 0.1524 (4) | -0.8004 (8)  | 4.7 (3)                   | 3.9 (3)  | 2.6 (2)        | 0.4 (2)   | 1.1 (2)    | -0.7 (2)                  |   |
| C(15) | 0.4528 (6) | 0.2383 (4) | -0.7662 (7)  | 3.6 (2)                   | 3.1 (2)  | 2.7 (2)        | 0.9 (2)   | 1.4 (2)    | 0.6 (2)                   |   |
| C(16) | 0.4709 (5) | 0.3042 (3) | ~0.6078(7)   | 2.0 (2)                   | 2.3 (2)  | 2.3 (2)        | 0.3(1)    | 0.5 (2)    | 0.6 (2)                   |   |
| C(21) | 0.2012 (5) | 0.1721 (4) | -0.3963 (7)  | 1.9 (2)                   | 2.8 (2)  | 2.7 (2)        | 0.1 (2)   | 0.5 (2)    | 0.3 (2)                   |   |
| C(22) | 0.1232 (6) | 0.2309 (4) | -0.3396 (8)  | 2.7 (2)                   | 3.3 (2)  | 4.2 (3)        | 0.5 (2)   | 1.6 (2)    | 0.8 (2)                   |   |
| C(23) | 0.0314 (6) | 0.2034 (5) | -0.2385 (9)  | 3.6 (2)                   | 4.6 (3)  | 6.0 (3)        | 1.0 (2)   | 2.9 (2)    | 0.7 (3)                   |   |
| C(24) | 0.0172 (7) | 0.1173 (5) | -0.1887 (9)  | 3.8 (3)                   | 5.4 (3)  | 5.0 (3)        | -0.2(2)   | 2.3 (2)    | 1.1 (3)                   |   |
| C(25) | 0.0911 (7) | 0.0581 (5) | -0.2455 (10) | 4.4 (3)                   | 4.0 (3)  | 5.6 (3)        | 0.3 (2)   | 2.0 (2)    | 1.9 (2)                   |   |
| C(26) | 0.1829 (6) | 0.0853 (4) | -0.3463 (9)  | 3.0 (2)                   | 3.4 (2)  | 5.2 (3)        | 0.8 (2)   | 1.4 (2)    | 1.0 (2)                   |   |
| C(31) | 0.9007 (5) | 0.4553 (3) | 0.1898 (1)   | 1.7 (2)                   | 3.2 (2)  | 2.2 (2)        | 1.0(1)    | 0.8 (1)    | 1.1 (2)                   |   |
| C(32) | 0.9255 (5) | 0.3666 (3) | 0.1854 (7)   | 2.1 (2)                   | 3.3 (2)  | 2.9 (2)        | 1.3 (1)   | 1.2(2)     | 1.3 (2)                   |   |
| C(33) | 1.0621 (5) | 0.3630 (4) | 0.2659 (8)   | 2.6 (2)                   | 4.8 (2)  | 4.1 (2)        | 2.3 (2)   | 1.3 (2)    | 2.4 (2)                   |   |
| C(34) | 1.1693 (5) | 0.4431 (4) | 0.3524 (8)   | 1.7 (2)                   | 5.6 (3)  | 3.2 (2)        | 1.3(2)    | 0.6 (2)    | 1.8 (2)                   |   |
| C(35) | 1.1435 (5) | 0.5308 (4) | 0.3562 (8)   | 1.3 (2)                   | 4.6 (3)  | 3.7 (2)        | 0.1 (2)   | 0.4 (2)    | 1.3 (2)                   |   |
| C(36) | 1.0106 (5) | 0.5375 (4) | 0.2741 (8)   | 1.5 (2)                   | 3.3 (2)  | 3.4 (2)        | 0.5 (2)   | 0.6 (2)    | 0.9 (2)                   |   |
| C(41) | 0.8147 (5) | 0.2769 (4) | 0.0888 (8)   | 2.2 (2)                   | 3.1 (2)  | 4.5 (3)        | 1.4 (2)   | 1.3 (2)    | 0.9 (2)                   |   |
| C(42) | 0.7309 (6) | 0.2654 (4) | -0.0912 (8)  | 3.4 (2)                   | 3.2 (2)  | 3.9 (3)        | 1.3 (2)   | 1.0 (2)    | 0.5 (2)                   |   |
| C(43) | 0.6331 (6) | 0.1808 (4) | -0.1843 (10) | 3.2 (2)                   | 3.5 (3)  | 6.2 (4)        | 1.3 (2)   | -0.1(2)    | -0.6 (3)                  |   |
| C(44) | 0.6191 (7) | 0.1057 (5) | -0.0999 (13) | 3.1 (3)                   | 3.7 (3)  | 9.9 (5)        | 0.7 (2)   | 0.6 (3)    | 0.1 (3)                   |   |
| C(45) | 0.6986 (8) | 0.1151 (4) | 0.0753 (12)  | 5.3 (3)                   | 3.1 (2)  | 10.3 (5)       | 1.3 (2)   | 2.6 (3)    | 3.0 (3)                   |   |
| C(46) | 0.7989 (7) | 0.2000 (4) | 0.1727 (9)   | 4.0 (3)                   | 3.4 (2)  | 5.5 (3)        | 1.3 (2)   | 1.0 (2)    | 1.6 (2)                   | _ |
| atom  | <u>x</u>   | У          | <i>Z</i>     | <i>B</i> , A <sup>2</sup> | atom     | x              | У         | Z          | <i>B</i> , Å <sup>2</sup> | _ |
| H(13) | 0.213 (5)  | 0.074 (3)  | -0.708 (6)   | 2.2 (10)                  | H(33)    | 1.077 (4)      | 0.306 (3) | 0.264 (6)  | 1.8 (10)                  |   |
| H(14) | 0.339 (5)  | 0.109 (4)  | -0.904 (7)   | 3.7 (13)                  | H(34)    | 1.262 (6)      | 0.439 (4) | 0.408 (8)  | 4.6 (15)                  |   |
| H(15) | 0.499 (5)  | 0.250 (3)  | -0.854 (6)   | 2.4 (11)                  | H(35)    | 1.216 (5)      | 0.594 (3) | 0.418 (7)  | 2.9 (12)                  |   |
| H(16) | 0.534 (4)  | 0.362 (3)  | -0.590 (5)   | 1.1 (9)                   | H(36)    | 0.989 (6)      | 0.599 (4) | 0.272 (7)  | 3.9 (13)                  |   |
| H(22) | 0.132 (5)  | 0.292 (3)  | -0.376 (7)   | 3.3 (12)                  | H(42)    | 0.744 (6)      | 0.312 (4) | -0.153 (8) | 4.4 (14)                  |   |
| H(23) | -0.018 (6) | 0.247 (4)  | -0.190 (8)   | 5.2 (16)                  | H(43)    | 0.577 (5)      | 0.171 (4) | -0.321 (7) | 3.6 (13)                  |   |
| H(24) | -0.049 (7) | 0.090 (5)  | -0.137 (10)  | 7.3 (20)                  | H(44)    | 0.545 (5)      | 0.044 (4) | -0.166 (7) | 3.7 (13)                  |   |
| H(25) | 0.072(6)   | 0.000 (4)  | -0.226 (8)   | 4.5 (14)                  | H(45)    | 0.690 (5)      | 0.071 (3) | 0.123 (6)  | 2.3 (11)                  |   |
| H(26) | 0.227 (5)  | 0.049 (3)  | -0.374 (7)   | 3.3 (12)                  | H(46)    | 0.842 (5)      | 0.209 (3) | 0.296 (6)  | 2.1 (10)                  |   |

<sup>a</sup> The form of the anisotropic thermal parameter is  $\exp[-0.25\{h^2a^2B(1,1) + k^2b^2B(2,2) + l^2c^2B(3,3) + 2hkabB(1,2) + 2hkabB(1,3) + 2klbcB(2,3)\}]$ , where *a*, *b*, and *c* are reciprocal lattice constants. <sup>b</sup> Estimated standard deviations in the least significant digits are shown in parentheses.

collection parameters. A  $\theta/2\theta$  scan technique with a variable scan rate from 4.0 to 24.0°/min was used in collection of data. Other general procedures for data collection are described elsewhere.<sup>9</sup> Diffraction data were corrected for Lorentz and polarization effects, but the small absorption coefficient (Table I) made an absorption correction unnecessary.

Solution and refinement<sup>10</sup> were undertaken in the triclinic space group  $P\overline{l}$ . The position of the Mo atom was obtained from a three-dimensional Patterson function. Initial refinement on this position gave discrepancy indices of

$$R_1 = \sum ||F_0| - |F_c|| / \sum |F_0| = 0.31$$
  

$$R_2 = [\sum w(|F_0| - |F_c|)^2 / \sum w|F_0|^2]^{1/2} = 0.39$$

The remaining four oxygen atoms and 26 carbon atoms were found by subsequent difference Fourier maps and least-square refinements. Refinement of positional and anisotropic thermal parameters gave discrepancy indices of  $R_1 = 0.045$  and  $R_2 = 0.064$ . A difference Fourier map revealed the positions of the hydrogen atoms which were then included in the refinement with isotropic thermal parameters to give final discrepancy indices of  $R_1 = 0.034$  and  $R_2 = 0.044$ . The largest peak in the final difference Fourier map was  $0.674 \text{ e/Å}^3$ .



Figure 1. ORTEP drawing of  $Mo_2(O_2Cbiph)_4$  with 50% probability thermal ellipsoids.

### Results

The positional and thermal parameters are recorded in Table II. Tables III and IV present the bond distances and angles following the numbering scheme as shown in Figure 1. Figure 2 shows the packing in the unit cell. A list of least-squares planes and dihedral angles for the phenyl rings and the dimolybdenum carboxylate units is given in Table V, which is

<sup>(9)</sup> Cotton, F. A.; Frenz, B. A.; Deganello, G.; Shaver, A. J. Organomet. Chem. 1973, 50, 227. Adams, R. D.; Collins, D. M.; Cotton, F. A. J. Am. Chem. Soc. 1974, 96, 749.

<sup>(10)</sup> All crystallographic computing was done on a PDP 11/60 computer at the Molecular Structure Corporation, College Station, Texas, using the Enraf-Nonius structure determination package.





Table III. Bond Distances (Å) and Their Estimated Standard Deviations

| Μο-Μο΄      | 2.082(1)  | C(34)-C(35)   | 1.377 (9) |
|-------------|-----------|---------------|-----------|
| Mo-O(1)     | 2.090 (3) | C(35)-C(36)   | 1.377 (8) |
| Mo-O(2)'    | 2.094 (3) | C(41)-C(42)   | 1.385 (9) |
| Mo-O(3)     | 2.099 (3) | C(41)-C(46)   | 1.382 (9) |
| Mo-O(4)'    | 2.107 (3) | C(42) - C(43) | 1.383 (9) |
| C(1)-O(1)   | 1.268 (6) | C(43) - C(44) | 1.36 (1)  |
| C(1)-O(2)   | 1.285 (6) | C(44) - C(45) | 1.34 (1)  |
| C(1)-C(11)  | 1.479 (7) | C(45)-C(46)   | 1.40(1)   |
| C(11)-C(12) | 1.412(7)  | C(13)-H(13)   | 0.93 (5)  |
| C(11)-C(16) | 1.394 (8) | C(14)-H(14)   | 0.90 (6)  |
| C(12)-C(13) | 1.392 (8) | C(15)-H(15)   | 0.92 (6)  |
| C(12)-C(21) | 1.483 (8) | C(16)-H(16)   | 0.92 (5)  |
| C(13)-C(14) | 1.38(1)   | C(22)-H(22)   | 0.98 (6)  |
| C(14)-C(15) | 1.382 (9) | C(23)-H(23)   | 0.98 (7)  |
| C(15)-C(16) | 1.374 (8) | C(24)-H(24)   | 0.90 (9)  |
| C(21)-C(22) | 1.387 (8) | C(25)-H(25)   | 0.89 (7)  |
| C(21)-C(26) | 1.380 (9) | C(26)-H(26)   | 0.80 (6)  |
| C(22)-C(23) | 1.375 (9) | C(33)-H(33)   | 0.89 (5)  |
| C(23)-C(24) | 1.37(1)   | C(34)-H(34)   | 0.96 (7)  |
| C(24)-C(25) | 1.36(1)   | C(35)-H(35)   | 1.02 (6)  |
| C(25)-C(26) | 1.37(1)   | C(36)-H(36)   | 0.99 (6)  |
| C(31)-C(32) | 1.388 (8) | C(42)-H(42)   | 0.90 (7)  |
| C(31)-C(36) | 1.404 (8) | C(43)-H(43)   | 1.03 (6)  |
| C(32)-C(33) | 1.392 (8) | C(44)-H(44)   | 1.02 (6)  |
| C(32)-C(41) | 1.494 (8) | C(45)-H(45)   | 0.78 (6)  |
| C(33)-C(34) | 1.373 (9) | C(46)-H(46)   | 0.90 (6)  |

# available as supplementary material.

The dimolybdenum unit is located on an inversion center, and the asymmetric unit consists of half of the molecule. The carboxylate groups are bonded in a regular fashion, imparting approximate  $D_{4h}$  symmetry to the central portion of the molecule. The Mo-Mo distance is 2.082 (1) Å, with the axial position unoccupied. The Mo-O distances average 2.098 (5) Å, which is equal to the average of the Mo-O distances to nonbridging oxygen atoms, 2.098 (4) Å in  $Mo_2(O_2CC_6H_5)_{4.4}$ The four O atoms are nearly planar, with the Mo atom lying 0.069 Å inside of the plane; the Mo-Mo-O angles have an average value of 91.9 (3)°.

### Discussion

The steric hindrance to intermolecular association that is introduced by placing a o-phenyl group on each of the four benzoate ligands is variable because of rotational freedom about the C-CO<sub>2</sub> bond and, to a lesser extent, about the C-C bond between the two phenyl groups. Probably one of the least favorable configurations is that found in the chromium compound,<sup>7</sup> where all four *o*-phenyl groups are directed toward one end of the dinuclear unit. However, because of the relatively high strength of the axial interactions which are then possible at the other end, this configuration leads to the lowest total energy of the system. For molybdenum, where the energy of intermolecular association is small, the introduction of the four o-phenyl groups is sufficient to prevent it, even when these substituents adopt an arrangement that is very favorable to themselves.

The four o-phenyl groups in the present case are arranged so that two of them lie more or less in the equatorial region of the molecule, while each of the other two is directed toward one end of the molecule. This probably minimizes repulsive



Table IV. Bond Angles (Deg) and Their Estimated Standard Deviations

| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |           |                           |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|---------------------------|-----------|
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mo'-Mo-O(1)           | 92.5 (1)  | C(22)-C(23)-H(23)         | 121 (4)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mo' - Mo - O(2)'      | 914(1)    | C(24) = C(23) = H(23)     | 118 (4)   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mo' Mo O(2)           | 01.9(1)   | C(24) C(24) C(25)         | 110 (4)   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MO - MO-O(3)          | 91.8(1)   | C(23) = C(24) = C(23)     | 119.4(0)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mo'-Mo-O(4)'          | 91.8(1)   | C(23)-C(24)-H(24)         | 126 (6)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O(1)-Mo-O(2)'         | 176.0(2)  | C(25)-C(24)-H(24)         | 114 (6)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $O(1) - M_0 - O(3)$   | 89.3 (1)  | C(24)-C(25)-C(26)         | 120.5 (8) |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $O(1) - M_0 - O(4)'$  | 89.2 (1)  | C(24) = C(25) = H(25)     | 118 (5)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $O(1)^{-100-O(4)}$    | 00.2(1)   | C(24) - C(25) - H(25)     | 10(5)     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O(2) = MO = O(3)      | 89.7(1)   | C(26) = C(25) = H(25)     | 121(3)    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O(2) - Mo - O(4)      | 91.5(1)   | C(21) - C(26) - C(25)     | 121.5 (8) |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O(3)-Mo-O(4)'         | 176.1 (1) | C(21)-C(26)-H(26)         | 121 (5)   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mo-O(1)-C(1)          | 117.0 (3) | C(25)-C(26)-H(26)         | 118 (5)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $M_0' = O(2) = C(1)$  | 117.6 (3) | C(32) - C(31) - C(36)     | 120.3(5)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $M_0 = O(3) = C(2)$   | 1174(3)   | C(31) = C(32) = C(33)     | 117.6 (6) |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mo' O(4) C(2)         | 117.7(3)  | C(31) $C(32)$ $C(33)$     | 1227(5)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M0 = O(4) = C(2)      | 110.7(3)  | C(31) - C(32) - C(41)     | 122.7(3)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O(1) - C(1) - O(2)    | 121.3(5)  | C(33) = C(32) = C(41)     | 119.6 (5) |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O(1)-C(1)-C(11)       | 120.5 (5) | C(32)-C(33)-C(34)         | 122.4 (6) |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O(2)-C(1)-C(11)       | 118.2 (5) | C(32)-C(33)-H(33)         | 117 (4)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O(3)-C(2)-O(4)        | 122.2 (5) | C(34)-C(33)-H(33)         | 120 (3)   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O(3)-C(2)-C(31)       | 119.1 (5) | C(33)-C(34)-C(35)         | 119.6 (6) |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(4) - C(2) - C(31)   | 117.8 (5) | C(33) - C(34) - H(34)     | 121(4)    |
| $\begin{array}{c} (1)-(11)-(12) & 122.3 (3) & (C(3)-(C(3))-(1(3+)-11)) \\ (1)-(11)-(11)-(16) & 116.3 (5) & (C(3)-(C(35)-(1(35)-11)) \\ (1)-(12)-(11)-(16) & 119.8 (5) & (C(3)-(C(35)-11)) \\ (1)-(12)-(13) & 117.0 (5) & (C(3)-(C(3))-(1(3)) & 115 (3) \\ (11)-(12)-(21) & 117.0 (5) & (C(3)-(C(3))-(1(3)) & 118 (4) \\ (2(12)-(2(1))-(2(1)) & 117.5 (5) & (C(3))-(C(3))-(1(3)) & 118 (4) \\ (2(12)-(2(1))-(2(1)) & 117.5 (5) & (C(3))-(C(3))-(1(3)) & 118 (4) \\ (2(12)-(2(1))-(1(4)) & 122.3 (6) & (C(3))-(C(3))-(1(3)) & 118 (4) \\ (2(12)-(2(13)-(1(4)) & 122.4 (6) & (C(32)-(2(4))-(2(46)) & 122.6 (6) \\ (2(13)-(2(14)-(1(5)) & 120.4 (6) & (C(42)-(2(4))-(2(46)) & 117.7 (6) \\ (2(13)-(2(14)-(1(5)) & 120.4 (6) & (C(42)-(2(4))-(2(46)) & 117.7 (7) \\ (2(15)-(2(14)-H(14) & 119 (4) & (C(41)-(2(2)-H(42) & 120 (5) \\ (2(14)-(15)-(16) & 118.6 (6) & (C(42)-(2(4))-H(42) & 118 (4) \\ (2(14)-(15)-H(15) & 123 (4) & (C(42)-(2(4))-H(42) & 118 (4) \\ (2(14)-(15)-H(15) & 123 (4) & (C(42)-(2(4))-H(43) & 122 (4) \\ (2(11)-(2(16)-H(16) & 121 (3) & (C(43)-C(44)-H(44) & 120 (4) \\ (2(12)-(21)-(22) & 121.7 (6) & (C(43)-C(44)-H(44) & 120 (4) \\ (2(12)-(21)-(26) & 121.1 (6) & (C(44)-(45)-H(45) & 119 (5) \\ (2(2)-(22)-(22)-(22) & 119 (4) & (C(41)-(46)-H(45) & 119 (5) \\ (2(2)-(22)-H(22) & 119 (4) & (C(41)-(46)-H(46) & 118 (4) \\ (2(2)-(22)-H(22) & 119 (4) & (C(41)-(46)-H(46) & 118 (4) \\ (2(2)-(22)-H(22) & 119 (4) & (C(41)-(46)-H(46) & 118 (4) \\ (2(2)-(22)-H(22) & 119 (4) & (C(41)-(46)-H(46) & 118 (4) \\ (2(2)-(22)-H(22) & 120.4 & (C(41)-(46)-H(46) & 118 (4) \\ (2(2)-(22)-H(22) & 120.4 & (C(41)-(46)-H(46) & 118 (4) \\ (2(2)-(22)-H(22) & 120.4 & (C(41)-(46)-H(46) & 118 (4) \\ (2(2)-(22)-H(22) & 120.4 & (C(41)-(46)-H(46) & 118 (4) \\ (2(2)-(23)-(24) & 120.4 & (C(41)-(46)-H(46) & 118 (4) \\ (2(2)-(23)-(24) & 120.4 & (C(41)-(46)-H(46) & 118 (4) \\ (2(2)-(23)-(24) & 120.4 & (C(41)-(46)-H(46) & 118 (4) \\ (2(2)-(23)-(24) & 120.4 & (C(41)-(46)-H(46) & 118 (4) \\ (2(2)-(23)-(24) & 120.4 & (C(41)-(46)-H(46) & 118 (4) \\ (2(2)-(23)-(24) & 120.4 & (C(41)-(46)-H(46) & 121 (4) \\ \end{array} \right)$ | C(1) = C(11) = C(12)  | 123 8 (5) | C(35) = C(34) = H(34)     | 110(4)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(1) = C(11) = C(12)  | 125.0(5)  | $C(33) - C(34) - \Pi(34)$ | 119(4)    |
| $\begin{array}{c} C(12)-C(11)-C(16) & 119.8 (5) & C(34)-C(35)-H(35) & 125 (3) \\ C(11)-C(12)-C(13) & 117.0 (5) & C(36)-C(35)-H(35) & 115 (3) \\ C(11)-C(12)-C(21) & 125.4 (5) & C(31)-C(36)-C(35) & 120.2 (6) \\ C(13)-C(12)-C(21) & 117.5 (5) & C(31)-C(36)-H(36) & 118 (4) \\ C(12)-C(13)-C(14) & 122.3 (6) & C(35)-C(36)-H(36) & 122 (4) \\ C(12)-C(13)-H(13) & 122 (4) & C(32)-C(41)-C(42) & 121.6 (6) \\ C(14)-C(13)-H(13) & 116 (3) & C(32)-C(41)-C(46) & 120.6 (6) \\ C(13)-C(14)-C(15) & 120.4 (6) & C(42)-C(41)-C(46) & 117.7 (6) \\ C(13)-C(14)-H(14) & 119 (4) & C(41)-C(42)-H(42) & 120 (5) \\ C(14)-C(15)-C(16) & 118.6 (6) & C(43)-C(42)-H(42) & 118 (4) \\ C(14)-C(15)-H(15) & 118 (3) & C(42)-C(43)-H(43) & 112.2 (4) \\ C(14)-C(15)-H(15) & 123 (4) & C(42)-C(43)-H(43) & 112 (3) \\ C(16)-C(15)-H(16) & 121 (3) & C(43)-C(44)-H(43) & 118 (3) \\ C(11)-C(16)-H(16) & 117 (3) & C(43)-C(44)-H(44) & 120 (4) \\ C(12)-C(21)-C(22) & 121.7 (6) & C(44)-C(45)-H(45) & 119.6 (8) \\ C(12)-C(21)-C(26) & 121.1 (6) & C(44)-C(45)-H(45) & 119 (5) \\ C(21)-C(22)-C(23) & 121.2 (7) & C(46)-C(45)-H(45) & 119 (5) \\ C(21)-C(22)-H(22) & 119 (4) & C(41)-C(46)-H(46) & 118 (4) \\ C(22)-C(21)-C(24) & 120.4 & C(41)-C(46)-H(46) & 118 (4) \\ C(22)-C(23)-C(24) & 120.2 (8) & C(45)-C(46)-H(46) & 118 (4) \\ C(22)-C(23)-C(24) & 120.2 (8) & C(45)-C(46)-H(46) & 121 (4) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(1) = C(11) = C(10)  | 110.3 (3) | C(34) = C(35) = C(36)     | 119.9(0)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(12) - C(11) - C(16) | 119.8 (5) | C(34) - C(35) - H(35)     | 125 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(11)-C(12)-C(13)     | 117.0 (5) | C(36)-C(35)-H(35)         | 115 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(11)-C(12)-C(21)     | 125.4 (5) | C(31)-C(36)-C(35)         | 120.2 (6) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(13)-C(12)-C(21)     | 117.5 (5) | C(31)-C(36)-H(36)         | 118 (4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(12) - C(13) - C(14) | 122.3 (6) | C(35) - C(36) - H(36)     | 122 (4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(12) = C(13) = H(13) | 122(4)    | C(32) = C(41) = C(42)     | 121 6 (6) |
| $\begin{array}{c} C(13)-C(14)-C(15) & 110 & (2) & (2(2)-C(41)-C(46) & 117.7 & (6) \\ C(13)-C(14)-C(15) & 120.4 & (6) & C(42)-C(41)-C(46) & 117.7 & (6) \\ C(13)-C(14)-H(14) & 119 & (4) & C(41)-C(42)-H(42) & 120 & (5) \\ C(15)-C(14)-H(14) & 121 & (4) & C(41)-C(42)-H(42) & 118 & (4) \\ C(14)-C(15)-C(16) & 118.6 & (6) & C(43)-C(42)-H(42) & 118 & (4) \\ C(14)-C(15)-H(15) & 118 & (3) & C(42)-C(43)-H(43) & 122 & (4) \\ C(11)-C(16)-H(15) & 123 & (4) & C(42)-C(43)-H(43) & 122 & (4) \\ C(11)-C(16)-H(15) & 121 & (6) & C(44)-C(43)-H(43) & 118 & (3) \\ C(15)-C(16)-H(16) & 121 & (3) & C(43)-C(44)-H(44) & 120 & (4) \\ C(12)-C(21)-C(22) & 121.7 & (6) & C(43)-C(44)-H(44) & 120 & (4) \\ C(12)-C(21)-C(26) & 121.1 & (6) & C(44)-C(45)-H(45) & 119 & (5) \\ C(21)-C(22)-C(23) & 121.2 & (7) & C(46)-C(45)-H(45) & 119 & (5) \\ C(21)-C(22)-H(22) & 119 & (4) & C(41)-C(46)-H(46) & 119 & (4) \\ C(22)-C(23)-C(24) & 120.2 & (8) & C(45)-C(46)-H(46) & 118 & (4) \\ C(22)-C(23)-C(24) & 120.2 & (8) & C(45)-C(46)-H(46) & 121 & (4) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(14) - C(13) - H(13) | 116(3)    | C(32) - C(41) - C(46)     | 120.6 (6) |
| $\begin{array}{c} C(13)-C(14)-C(13) & 120.4 (6) & C(42)-C(41)-C(43) & 111.7 (6) \\ C(13)-C(14)-H(14) & 119 (4) & C(41)-C(42)-C(43) & 121.7 (7) \\ C(15)-C(14)-H(14) & 121 (4) & C(41)-C(42)-H(42) & 120 (5) \\ C(14)-C(15)-C(16) & 118.6 (6) & C(43)-C(42)-H(42) & 118 (4) \\ C(14)-C(15)-H(15) & 118 (3) & C(42)-C(43)-C(44) & 119.9 (8) \\ C(16)-C(15)-H(15) & 123 (4) & C(42)-C(43)-H(43) & 122 (4) \\ C(11)-C(16)-C(15) & 121.9 (6) & C(44)-C(43)-H(43) & 118 (3) \\ C(11)-C(16)-H(16) & 121 (3) & C(43)-C(44)-H(43) & 118 (3) \\ C(12)-C(21)-C(22) & 121.7 (6) & C(43)-C(44)-H(44) & 120 (4) \\ C(12)-C(21)-C(26) & 121.1 (6) & C(44)-C(45)-C(46) & 121.7 (9) \\ C(22)-C(21)-C(26) & 117.1 (6) & C(44)-C(45)-H(45) & 119 (5) \\ C(21)-C(22)-H(22) & 119 (4) & C(41)-C(46)-H(45) & 119 (48) \\ C(23)-C(22)-H(22) & 120 (4) & C(41)-C(46)-H(46) & 118 (4) \\ C(22)-C(23)-C(24) & 120.2 (8) & C(45)-C(46)-H(46) & 121 (4) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(14) = C(14) = C(15) | 120(3)    | C(32) = C(41) = C(46)     | 120.0(0)  |
| $\begin{array}{c} C(13)-C(14)-H(14) & 119 (4) & C(41)-C(42)-C(43) & 121.7 (7) \\ C(15)-C(14)-H(14) & 121 (4) & C(41)-C(42)-H(42) & 120 (5) \\ C(14)-C(15)-C(16) & 118.6 (6) & C(43)-C(42)-H(42) & 118 (6) \\ C(14)-C(15)-H(15) & 118 (3) & C(42)-C(43)-H(43) & 1122 (4) \\ C(16)-C(15)-H(15) & 123 (4) & C(42)-C(43)-H(43) & 1122 (4) \\ C(11)-C(16)-C(15) & 121.9 (6) & C(44)-C(43)-H(43) & 118 (3) \\ C(11)-C(16)-H(16) & 121 (3) & C(43)-C(44)-H(44) & 120 (4) \\ C(12)-C(21)-C(22) & 121.7 (6) & C(43)-C(44)-H(44) & 120 (4) \\ C(12)-C(21)-C(26) & 121.1 (6) & C(44)-C(45)-H(45) & 119 (5) \\ C(21)-C(22)-C(23) & 121.2 (7) & C(46)-C(45)-H(45) & 119 (5) \\ C(21)-C(22)-H(22) & 119 (4) & C(41)-C(46)-H(46) & 118 (4) \\ C(22)-C(23)-C(24) & 120.2 (8) & C(45)-C(46)-H(46) & 118 (4) \\ C(22)-C(23)-C(24) & 120.2 (8) & C(45)-C(46)-H(46) & 121 (4) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(13) = C(14) = U(14) | 120.4(0)  | C(42) = C(41) = C(40)     | 117.7(0)  |
| $\begin{array}{c} C(15)-C(14)-H(14) & 121 (4) & C(41)-C(42)-H(42) & 120 (5) \\ C(14)-C(15)-C(16) & 118.6 (6) & C(43)-C(42)-H(42) & 118 (4) \\ C(14)-C(15)-H(15) & 118 (3) & C(42)-C(43)-C(44) & 119.9 (8) \\ C(16)-C(15)-H(15) & 123 (4) & C(42)-C(43)-H(43) & 122 (4) \\ C(11)-C(16)-C(15) & 121.9 (6) & C(44)-C(43)-H(43) & 118 (3) \\ C(11)-C(16)-H(16) & 121 (3) & C(43)-C(44)-H(43) & 118 (3) \\ C(15)-C(16)-H(16) & 117 (3) & C(43)-C(44)-H(44) & 120 (4) \\ C(12)-C(21)-C(22) & 121.7 (6) & C(44)-C(45)-H(45) & 119.6 (8) \\ C(12)-C(21)-C(26) & 121.1 (6) & C(44)-C(45)-C(46) & 121.7 (9) \\ C(22)-C(21)-C(23) & 121.2 (7) & C(46)-C(45)-H(45) & 119 (5) \\ C(21)-C(22)-H(22) & 119 (4) & C(41)-C(46)-H(45) & 119 (5) \\ C(23)-C(22)-H(22) & 120 (4) & C(41)-C(46)-H(46) & 118 (4) \\ C(22)-C(23)-C(24) & 120.2 (8) & C(45)-C(46)-H(46) & 121 (4) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(13) = C(14) = H(14) | 119 (4)   | C(41) = C(42) = C(43)     | 121.7(7)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(15) - C(14) - H(14) | 121 (4)   | C(41) - C(42) - H(42)     | 120 (5)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(14) - C(15) - C(16) | 118.6 (6) | C(43) - C(42) - H(42)     | 118 (4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(14)-C(15)-H(15)     | 118 (3)   | C(42)-C(43)-C(44)         | 119.9 (8) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(16)-C(15)-H(15)     | 123 (4)   | C(42)-C(43)-H(43)         | 122 (4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(11)-C(16)-C(15)     | 121.9 (6) | C(44)-C(43)-H(43)         | 118 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(11)-C(16)-H(16)     | 121 (3)   | C(43)-C(44)-C(45)         | 119.6 (8) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(15)-C(16)-H(16)     | 117(3)    | C(43)-C(44)-H(44)         | 120(4)    |
| $\begin{array}{c} C(12)-C(21)-C(26) & 121.1 (6) & C(44)-C(45)-C(46) & 121.7 (9) \\ C(22)-C(21)-C(26) & 117.1 (6) & C(44)-C(45)-H(45) & 119 (5) \\ C(21)-C(22)-C(23) & 121.2 (7) & C(46)-C(45)-H(45) & 119 (5) \\ C(21)-C(22)-H(22) & 119 (4) & C(41)-C(46)-C(45) & 119.4 (8) \\ C(23)-C(22)-H(22) & 120 (4) & C(41)-C(46)-H(46) & 118 (4) \\ C(22)-C(23)-C(24) & 120.2 (8) & C(45)-C(46)-H(46) & 121 (4) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(12) = C(21) = C(22) | 121 7 (6) | C(45) - C(44) - H(44)     | 120(4)    |
| $\begin{array}{c} C(22)-C(21)-C(26) & 121.1 (6) & C(44)-C(45)-E(46) & 121.7 (9) \\ C(22)-C(21)-C(26) & 117.1 (6) & C(44)-C(45)-H(45) & 119 (5) \\ C(21)-C(22)-C(23) & 121.2 (7) & C(46)-C(45)-H(45) & 119 (5) \\ C(21)-C(22)-H(22) & 119 (4) & C(41)-C(46)-H(45) & 119.4 (8) \\ C(23)-C(22)-H(22) & 120 (4) & C(41)-C(46)-H(46) & 118 (4) \\ C(22)-C(23)-C(24) & 120.2 (8) & C(45)-C(46)-H(46) & 121 (4) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(12) = C(21) = C(26) | 121.7(0)  | C(44) = C(45) = C(46)     | 120(1)    |
| $\begin{array}{c} C(22)-C(22)-C(23) & 117.1 (6) & C(44)-C(45)-H(45) & 119 (5) \\ C(21)-C(22)-C(23) & 121.2 (7) & C(46)-C(45)-H(45) & 119 (5) \\ C(21)-C(22)-H(22) & 119 (4) & C(41)-C(46)-C(45) & 119.4 (8) \\ C(23)-C(22)-H(22) & 120 (4) & C(41)-C(46)-H(46) & 118 (4) \\ C(22)-C(23)-C(24) & 120.2 (8) & C(45)-C(46)-H(46) & 121 (4) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(12) = C(21) = C(20) | 121.1(0)  | C(44) - C(45) - U(45)     | 121.7(9)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(22) = C(21) = C(20) | 101.0 (5) | C(44) = C(43) = H(43)     | 119 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(21) - C(22) - C(23) | 121.2(/)  | C(40) - C(45) - H(45)     | 119 (5)   |
| C(23)-C(22)-H(22) 120 (4) $C(41)-C(46)-H(46)$ 118 (4)<br>C(22)-C(23)-C(24) 120.2 (8) $C(45)-C(46)-H(46)$ 121 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(21)-C(22)-H(22)     | 119 (4)   | C(41)-C(46)-C(45)         | 119.4 (8) |
| C(22)-C(23)-C(24) 120.2 (8) $C(45)-C(46)-H(46)$ 121 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(23)-C(22)-H(22)     | 120 (4)   | C(41)-C(46)-H(46)         | 118 (4)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(22)-C(23)-C(24)     | 120.2 (8) | C(45)-C(46)-H(46)         | 121 (4)   |

Table VI. Structure Parameters (A) for Five Infinite-Chain Associated Structures of Mo<sub>2</sub> (O<sub>2</sub>CR)<sub>4</sub> Compounds

|   | R                             | Mo-O(nb) <sup>a</sup> | Mo-O(b) <sup>a</sup> | Mo…O(b) <sup>b</sup> | Mo-Mo      | ref |
|---|-------------------------------|-----------------------|----------------------|----------------------|------------|-----|
| 1 | C <sub>6</sub> H <sub>5</sub> | 2.098 (4)             | 2.131 (3)            | 2.876 (2)            | 2.096 (1)  | 5   |
| 2 | Н                             | 2.101 (15)            | 2.131 (9)            | 2.645 (2)            | 2.091 (2)  | 6   |
| 3 | CH,                           | 2.113 (6)             | 2.137 (4)            | 2.645 (2)            | 2.0934 (8) | 3   |
| 4 | C₄Ĥ,                          | 2.106 (5)             | 2.126 (5)            | 2.870 (5)            | 2.088(1)   | 5   |
| 5 | ĊF,                           | 2.03 (5)              | 2.14 (2)             | 2.71 (1)             | 2.090 (4)  | 4   |

<sup>a</sup> O(b) and O(nb) represent the carboxylate oxygen atoms that participate and do not participate, respectively, in intermolecular bridge bonding. <sup>b</sup> This distance is the intermolecular one.

forces between the o-phenyl groups, but it also introduces only a slight interference with intermolecular association of the type shown in I. Evidently this slight interference is sufficient to preclude the weak association that would otherwise occur, as in the benzoate and the four compounds listed in Table VI. In short, weak association can be prevented by weak interference.

It is interesting to compare some of the structure parameters in this, the first isolated  $Mo_2(O_2CR)_4$  molecule to be studied by X-ray crystallography, with those in the five associated  $Mo_2(O_2CR)_4$  compounds previously studied crystallographically. The pertinent data on the latter are listed in Table VI. The only dimension that differs significantly from one of these associated compounds to another is the intermolecular Mo-••O(b) distance, which is ca. 2.65 Å to two, ca. 2.87 Å in two others, and 2.71 Å in the fifth. However, this does not seem to induce, or correlate with, significant variations in any other distance. The Mo-Mo distances are all in the narrow range of 2.088-2.096 Å, with an average value of 2.092 Å. In each case the Mo-O(b) distances are ca. 0.03 Å longer than the Mo-O(nb) ones, and the latter, with the possible exception of the rather imprecise one in the CF<sub>3</sub> compound, are in the range 2.098-2.113 Å. In the present case, where all of the Mo-O distances are of the Mo-O(nb) type, the mean value is 2.098 ± 0.009 Å.

The only significantly different distance in the present case is the Mo-Mo distance, 2.082 (1) Å, which is 0.014 (2) Å shorter than that in the benzoate and 0.010 Å shorter than the average of all five listed in Table VI. Qualitatively, it is to be expected that the formation of weak intermolecular bonds would lengthen the Mo-Mo bond slightly, and a lengthening of 0.010-0.014 Å is indicated by the results reported here.

This present work is in excellent accord with the results of an electron diffraction study of the gaseous  $Mo_2(O_2CCH_3)_4$ molecule,<sup>11</sup> where it was found that all bond lengths are essentially the same as those in the crystalline compound except for the Mo-Mo distance, which is 2.079 (3) Å. This is a decrease of 0.014 (3) Å from that in the crystalline compound, equal to the decrease we have found.

There has also been a gas-phase electron diffraction study of  $Mo_2(O_2CCF_3)_4$ , but here the uncertainty in the Mo-Mo bond length, 2.105 (9) Å, together with that in the crystallographic value, 2.090 (4) Å, is such that the difference between them has an esd of ca. 0.010 Å, which is sufficient to obscure the sort of 0.010-Å difference in the other direction that might have been anticipated.

Acknowledgment. We thank the National Science Foundation for financial support.

**Registry No.** Mo<sub>2</sub>(O<sub>2</sub>Cbiph)<sub>4</sub>, 78764-18-8; Mo<sub>2</sub>(O<sub>2</sub>CCH<sub>3</sub>)<sub>4</sub>, 14221-06-8.

Supplementary Material Available: Tables of observed and calculated structure factors and least-squares planes and dihedral angles (Table V) (11 pages). Ordering information is given on any current masthead page.

(11) Fink, M.; Kelley, M., Department of Physics, University of Texas, Austin, TX, private communication.

> Contribution from the Department of Chemistry, Texas A&M University, College Station, Texas 77843

# A Quadruply Bonded Dimolybdenum Compound Containing Only Chelating Ligands: Bis(diethyl-2-pyrazolylhydroxoborato)bis(diethyldi-2-pyrazolylborato)dimolybdenum

F. ALBERT COTTON,\* BRIAN W. S. KOLTHAMMER, and GRAHAM N. MOTT

## Received April 8, 1981

Another of the reaction products of  $[Et_2B(pz)_2]^-$  (pz = 2-pyrazolyl) with Mo<sub>2</sub>(O<sub>2</sub>CCH<sub>3</sub>)<sub>4</sub> has been isolated and identified by X-ray crystallography. It is the first reported Mo<sub>2</sub><sup>4+</sup> complex containing exclusively chelating ligands, two of which are  $[Et_2B(pz)_2]^-$  ions and two are  $[Et_2B(OH)pz]^-$  ions. One ligand of each type is coordinated to each molybdenum atom,

and the arrangement is such that the N<sub>3</sub>OMo<sup>4</sup>MoON<sub>3</sub> core is essentially eclipsed; there is no crystallographic symmetry, but the overall ligand arrangement conforms to virtual  $C_2$  symmetry, with the twofold axis a perpendicular bisector of the Mo-Mo bond. This bond has a length of 2.156 (1) Å. The compound crystallizes in space group  $P_{2_1/n}$  with unit cell dimensions of a = 10.176 (5) Å, b = 20.984 (4) Å, c = 22.892 (5) Å,  $\beta = 91.70$  (0)°, V = 4886 (5) Å<sup>3</sup>, and Z = 4. The manner in which the dipyrazolyl ligand is partly converted to the pyrazolyl hydroxo ligand is not known, but the process occurs even under carefully anaerobic conditions.

# Introduction

Several years ago reactions of  $Mo_2(O_2CCH_3)_4$  with di- and tripyrazolylborate ligands were investigated.<sup>1</sup> The following three reactions were reported:

$$Mo_2(O_2CCH_3)_4 + 4Na[BEt_2(pz)_2] \rightarrow Mo_2(BEt_2(pz)_2)_4 (1) + 4CH_3CO_2Na (1)$$

$$\begin{array}{l} Mo_2(O_2CCH_3)_4 + 2Na[BEt_2(pz)_2] \rightarrow \\ Mo_2(O_2CCH_3)_2(BEt_2(pz)_2)_2 \ (\textbf{2}) + 2CH_3CO_2Na \ (2) \end{array}$$

$$Mo_2(O_2CCH_3)_4 + 2K[BH(pz)_3] \rightarrow Mo(O_2CCH_3)_2(BH(pz)_3)_2 (3) + 2CH_3CO_2K (3)$$

Products 2 and 3 were fully characterized by X-ray crystallography and shown to contain a cisoid  $Mo_2(O_2CCH_3)_2$  unit with one chelating pyrazolylborate ligand on each metal atom. Attempts to obtain crystals of the blue compound, 1, were unsuccessful, and at that time no further efforts were planned.

Since then two other reactions<sup>2,3</sup> of  $Mo_2(O_2CCH_3)_4$  with chelating ligands have been examined, but in each case only two chelating ligands could be introduced, giving the products  $4^2$  and  $5.^3$ 



We recently decided to reexamine the earlier work on the reaction of  $Mo_2(O_2CCH_3)_4$  with  $Na[Et_2B(pz)_2]$  in the hope

<sup>(1)</sup> Collins, D. M.; Cotton, F. A.; Murillo, C. A. Inorg. Chem. 1976, 15, 1862.

<sup>(2)</sup> Garner, C. D.; Parker, S.; Walton, I. B.; Clegg, W. Inorg. Chim. Acta

<sup>1978, 31,</sup> L451. (3) Cotton, F. A.; Ilsley, W. H.; Kaim, W. Inorg. Chim. Acta 1979, 37, 267.